
1

AWS Cloud-Based Discussion Forum

by

Project Team: Cloud Crafters

Raahul Krishna - 821934171

Komal Kiri - 825935760

Sumit Singh - 884416991

Vidhi Sharma - 820240299

Prem Brahmbhatt - 826308843

Discussion Forum Title: TopicTribe

A project report submitted for the fulfilment of

CPSC 465: Modern Software Deployment and Operations

Department of Computer Science

California State University, Fullerton

Submitted on 2nd December 2024

2

Contents

1. Introduction .. 5

1.1 Background .. 5

1.2 Objective ... 5

1.3 Scope ... 6

2. Related Work .. 6

3. System Design and Architecture ... 8

3.1 System Overview ... 8

3.2 Architecture .. 8

3.3 Workflow ... 9

4. Implementation .. 10

4.1 Technologies Used .. 10

4.2 Key Features ... 10

4.3 Code Snippets and Configurations ... 11

4.3.1AWS Configurations .. 11

4.3.2 Code Snippets ... 18

6. Results and Discussions .. 24

6.1 Performance Metrics ... 24

6.2 Challenges Encountered ... 24

6.3 Benefits ... 25

7. Conclusions and Future Work .. 26

7.1 Conclusions .. 26

7.2 Future Work .. 26

8. References .. 27

9. Repository Link .. 27

3

Table Of Figures

Figure 1: Process Flow Diagram ... 8

Figure 2:GitHub Repository ... 11

Figure 3: AWS Amplify .. 12

Figure 4: User Authentication Via Amazon Cognito ... 12

Figure 5: API Gateway for Redirecting User Requests to Lambda Functions 13

Figure 6: API Routes ... 13

Figure 7: Triggers .. 14

Figure 8: AWS Lambda Functions .. 15

Figure 9: Lambda Functions Code.. 15

Figure 10: DynamoDB Database .. 16

Figure 11: Amazon SQS ... 17

Figure 12: Amazon CloudWatch for logs .. 17

Figure 13: Front End Code (Forum Page) .. 18

Figure 14: Front End Code (Forum Post Page) ... 18

Figure 15: Front End Code 3 (Package.json file) ... 19

Figure 16: Front Code (_app.tsx) .. 19

Figure 17: Backend Code (Post Create Service) ... 20

Figure 18: Backend Code (Post Retrieve Service) ... 20

Figure 19: Post Create Service function overview ... 21

Figure 21: Login Page ... 21

Figure 22: Sign Up Page ... 22

Figure 23: List of Forum (Home Page) ... 22

Figure 24: Discussion of Forum .. 23

Figure 25: Topics on Discussion with vote and comments .. 23

4

Abstract

This project implements a cloud-based discussion forum making use of the different

resources provided by Amazon Web Services (AWS). The said platform allows for an

interaction between users in which the users can talk to each other, exchange ideas

and form communities. The front end of the forum has been built using Next.js,

Amazon Cognito as a means of authenticated user interaction securely, and AWS

Lambda incorporated through API Gateway as the backend for the system, thus

providing a robust and scalable architecture for the forum. Its broad capabilities

manage to include, but are not limited to, real-time post updates, email updates, and

elastic scalability dealing with a constant flow of traffic or even moderate flow of it. The

platform provides a dependable and consistent user experience by maximizing the

available capabilities of the AWS elements while guaranteeing protection of the

sensitive matters and making the system user friendly. The system is autoscaling in

nature meaning it grows seamlessly to meet demand without performance or security

risk. This project highlights the advantages of modern web development techniques

and integrating them with cloud-based architecture to improve the building of highly

functional online community platforms.

Keywords

AWS, Discussion Forum, Cognito, AWS Lambda, Next.js, DynamoDB, Scalability,

Serverless

5

1. Introduction

1.1 Background

● Growing Need for Online Communities: As more individuals and

organizations seek digital spaces for collaboration, learning, and engagement,

cloud-based discussion forums are essential for fostering inclusive, scalable,

and real-time online communities.

● Balancing Scalability and Cost: Ensuring the platform can scale dynamically

to handle traffic spikes while maintaining cost efficiency is a significant

challenge when building a cloud-based discussion forum.

1.2 Objective

The objective of this project is to create a secure, scalable, and feature-rich cloud-

based discussion forum that provides a seamless and engaging user experience. The

key goals are:

1. Ensure Secure User Authentication: Provide a secure and reliable

authentication process, protecting user data and interactions from unauthorized

access.

2. Deliver a Seamless User Experience: Create a fast, responsive, and intuitive

interface that facilitates smooth user interactions, fostering engagement and

community-building.

3. Enable Scalability: Design the platform to handle growing user traffic and data

efficiently, ensuring the system can scale dynamically without compromising

performance.

6

4. Support Real-Time Interaction: Implement features that enable users to

participate in real-time discussions, receive instant updates, and stay engaged

through timely notifications.

5. Ensure Modular and Maintainable Architecture: Adopt a flexible architecture

that allows for independent management of different forum components (such

as forums, posts, and votes), making future updates and enhancements easier.

6. Ensure Reliable Messaging: Guarantee the reliable delivery of important

messages, such as notifications to users via e-mail, ensuring consistent

communication within the platform.

1.3 Scope

This project focuses on developing a secure, scalable cloud-based discussion forum

that allows users to create and participate in discussions, vote on posts, and receive

real-time notifications. Key features include secure user authentication, real-time

updates, email notifications, and a serverless architecture for easy scalability. The

platform will support a growing user base, providing a seamless user experience.

However, the project will not include advanced content moderation tools, third-party

integrations, or mobile-specific features in its initial version. The scope is also limited

to English-language support, with future phases planned for expanding functionalities.

2. Related Work

● Existing cloud-based discussion forums, such as those built on Firebase or

Azure, can face challenges scaling efficiently during periods of high traffic. AWS

offers a more robust solution with services like AWS Lambda for serverless

computing and Amazon DynamoDB for scalable data storage, ensuring the

7

platform can automatically adjust resources to meet growing demand without

compromising performance.

● While platforms like Firebase or local servers require manual configuration for

security and real-time features, AWS provides built-in solutions like Amazon

Cognito for secure user authentication and API Gateway for routing requests.

This enables seamless, secure interactions and real-time updates, enhancing

user engagement while maintaining a reliable and secure platform.

8

3. System Design and Architecture

3.1 System Overview

The AWS Cloud-Based Discussion Forum is a secure, scalable platform built to

facilitate real-time user interactions and community engagement. On the front end, the

platform uses Next.js to provide a responsive and dynamic user interface for creating

forums, posting content, and interacting with discussions. Amazon Cognito handles

secure user authentication, ensuring only registered users can access certain

features. On the backend, AWS Lambda processes API requests routed through API

Gateway, while Amazon DynamoDB stores user data, posts, and votes. Real-time

interactions and notifications are managed through Amazon SES, keeping users

informed about new posts or replies. The serverless architecture ensures the platform

can scale seamlessly, providing high availability and reliability as user traffic grows.

3.2 Architecture

Figure 1: Process Flow Diagram

9

3.3 Workflow

The architecture is built on AWS cloud services, using a microservices approach:

 1. Front-end: Next.js for frontend framework. AWS Amplify is used to host the front-

end.

2. User Authentication: Amazon Cognito will manage user sign-in and sign-up

processes.

3. API Layer: AWS API Gateway routes incoming requests to respective

microservices.

4. Backend Services: AWS Lambda for serverless backend logic (Python-based)

for handling forums, posts, and votes.

5. Data Storage: Amazon DynamoDB as the NoSQL database to store forum-related

data.

6. Monitoring and Logging: Amazon CloudWatch for monitoring application health

and storing logs.

7. Notifications: Amazon SES sends email notifications to users when a forum or

post is created. Amazon SQS stores email requests, ensuring reliable message

delivery.

This architecture ensures scalability, high availability, and modularity, allowing for

future enhancements and optimizations.

10

4. Implementation

4.1 Technologies Used

● Front-End: Next.js

● Front-End Deployment: AWS Amplify

● Authentication: Amazon Cognito

● Back-End Services: AWS Lambda (Python)

● Database: Amazon DynamoDB (NoSQL)

● API Layer: AWS API Gateway

● Notifications: Amazon SES (Email), Amazon SQS (Queuing)

● Logging: AWS CloudWatch

4.2 Key Features

● Secure User Authentication and Authorization: Users can securely sign up, log

in, and manage their accounts with Amazon Cognito, ensuring protected access

to forum features.

● Real-Time Post and Interaction: Users can create and interact with posts and

comments in real-time, with changes instantly reflected on the platform.

11

● Scalable, Serverless Backend: The platform uses AWS Lambda for serverless

processing and Amazon DynamoDB for scalable, high-performance data storage,

ensuring smooth operation even with increasing traffic.

● Real-Time Notifications: Users receive timely email notifications through

Amazon SES when new content is posted or when their posts receive responses.

● Modular Microservices Architecture: The platform follows a microservices-

based architecture, allowing independent management of forums, posts, votes,

and user data for easier maintenance and future scalability.

4.3 Code Snippets and Configurations

4.3.1 AWS Configurations

1. Frontend Deployment using AWS Amplify- The frontend code has been

created in Next.js framework and has been deployed on AWS Amplify. The

frontend code resides in a GitHub repository, from where Amplify fetches it for

deployment.

Figure 2:GitHub Repository

12

Figure 3: AWS Amplify

2. User Authentication Via Amazon Cognito - A user pool in Amazon Cognito has

been created which will be storing the user information such as name, email and

account passwords.

Figure 4: User Authentication Via Amazon Cognito

3. API Gateway for Redirecting User Requests to Lambda Functions: After the

user has been authenticated, Amazon API Gateway will be directing these user

13

requests to the appropriate Lambda functions, where the backend logic for various

operations in the discussion forum is defined.

Figure 5: API Gateway for Redirecting User Requests to Lambda Functions

Figure 6: API Routes

14

Figure 7: Triggers

15

4. Backend Logic Implemented Via AWS Lambda: The backend logic for

various operations like post, vote and comment in the discussion forum have

been stored in AWS Lambda functions written Python.

Figure 8: AWS Lambda Functions

Figure 9: Lambda Functions Code

16

5. Forum Data Stored in DynamoDB: Forum data generated by various user

operations such as new posts, new comments, vote count, etc. are stored in

DynamoDB.

Figure 10: DynamoDB Database

6. Amazon SQS and SES for Managing Notifications: The new notifications

generated by the user operations in the forum will be conveyed to the users using

amazon SQS and SES. Since the architecture is serverless and all operations are

carried out in the form of lambda function calls, with each new change the user

17

needs to be notified about, a request will be coming in amazon SQS, which will

then be forwarded to the user using SES.

Figure 11: Amazon SQS

7. AWS CloudWatch for Logging: The logs generated by various user operations

in the discussion forum will be logged and recorded by AWS CloudWatch.

Figure 12: Amazon CloudWatch for logs

18

4.3.2 Code Snippets

1. Front End Code (Next.js)

Figure 13: Front End Code (Forum Page)

Figure 14: Front End Code (Forum Post Page)

19

Figure 15: Front End Code 3 (Package.json file)

Figure 16: Front Code (_app.tsx)

20

2. Backend Code - AWS Lambda Functions

Figure 17: Backend Code (Post Create Service)

Figure 18: Backend Code (Post Retrieve Service)

21

Figure 19: Post Create Service function overview

5. Frontend Design

Figure 20: Login Page

22

Figure 21: Sign Up Page

Figure 22: List of Forum (Home Page)

23

Figure 23: Discussion of Forum

Figure 24: Topics on Discussion with vote and comments

24

6. Results and Discussions

6.1 Performance Metrics

● Latency, Response Times, and Throughput: The AWS Cloud-Based

Discussion Forum ensures low latency and fast response times by using AWS

Lambda for serverless processing and Amazon DynamoDB for scalable data

storage. This serverless architecture automatically scales based on demand,

minimizing delays during traffic spikes. API Gateway efficiently handles

requests, ensuring smooth interactions, real-time updates, and notifications.

● Cost Comparison with and without Serverless Architecture: With AWS

Lambda's serverless architecture, the platform incurs costs based on actual

usage, reducing expenses during low-traffic periods. In contrast, traditional

server-based solutions require fixed costs for maintaining infrastructure, even

during periods of low activity. Serverless architecture eliminates this overhead,

offering a more cost-effective and scalable solution.

6.2 Challenges Encountered

1. Difficulty in Technology Selection: We initially faced challenges selecting

technologies, starting with EC2 and later transitioning to serverless Lambda,

while also moving from RDS to DynamoDB for a better fit with our project

requirements.

2. User Pool Configuration Issue: The initial Amazon Cognito user pool was

configured to accept just the user emails and passwords, but later we needed

to include users' names. However, for this change, the existing configuration

could not be modified.

25

3. Converting Relational Schema to DynamoDB Schema: As we plan to add

more features to our project, modifying a relational database would have been

challenging. Therefore, we transitioned to DynamoDB, which offers a schema

less structure and greater scalability.

4. User Verification Email Issue: We initially planned to send only one

verification email to users using Amazon Cognito and Amazon SES. To achieve

this, we attempted to use an AWS Lambda function with a Post Confirmation

trigger to send a custom email. However, we encountered an issue where

SES's default confirmation email could not be bypassed, and the user would

always receive both the SES-generated email and our custom email.

5. Mindful Use of AWS Free Tier: Resource management was critical to avoid

exceeding the AWS free tier limits.

6.3 Benefits

● Scalability: The serverless architecture using AWS Lambda and DynamoDB

ensures automatic scaling to handle growing user traffic without manual

intervention, maintaining performance during high demand.

● Security: Amazon Cognito provides robust user authentication and

authorization, ensuring secure access to the platform while protecting user

data.

● User Experience: Real-time interactions, instant notifications via Amazon

SES, and a responsive Next.js front end create an engaging, seamless

experience for users across devices.

26

7. Conclusions and Future Work

7.1 Conclusions

The AWS Cloud-Based Discussion Forum is a scalable, secure platform designed for

real-time user engagement. Built on a serverless architecture, it uses AWS Lambda

for backend processing, Amazon Cognito for user authentication, and Amazon

DynamoDB for fast, reliable data storage. The forum supports dynamic interactions,

allowing users to create posts, comment, and vote, with real-time notifications via

Amazon SES to keep users engaged.

The system’s microservices architecture ensures flexibility and easy maintenance,

allowing each component (forums, posts, votes) to scale independently. Despite

challenges like migrating to a serverless setup and handling schema changes, the

team successfully navigated these issues. The result is a robust, responsive forum

offering a seamless, scalable experience for users.

7.2 Future Work

● Implement AI-based content moderation using tools like Amazon Comprehend

for sentiment analysis and automated flagging of inappropriate content.

● Add multi-language support to allow users from different regions to engage in

discussions in their native languages.

● Develop a mobile app for iOS and Android to provide a more seamless user

experience with features like push notifications and offline access.

27

8. References

● AWS Documentation, AWS Documentation

 ● AWS Cognito Documentation, AWS Cognito

 ● AWS Lambda Documentation, AWS Lambda

 ● AWS DynamoDB Documentation, DynamoDB

9. Repository Link: https://github.com/Komal-7/topictribe

https://aws.amazon.com/documentation/
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://github.com/Komal-7/topictribe

	1. Introduction
	1.1 Background
	1.2 Objective
	1.3 Scope

	2. Related Work
	3. System Design and Architecture
	3.1 System Overview
	The AWS Cloud-Based Discussion Forum is a secure, scalable platform built to facilitate real-time user interactions and community engagement. On the front end, the platform uses Next.js to provide a responsive and dynamic user interface for creating f...
	3.3 Workflow

	4. Implementation
	4.1 Technologies Used ● Front-End: Next.js
	4.2 Key Features
	4.3 Code Snippets and Configurations
	4.3.1 AWS Configurations
	4.3.2 Code Snippets

	6. Results and Discussions
	6.1 Performance Metrics
	6.2 Challenges Encountered
	6.3 Benefits
	7. Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	8. References ● AWS Documentation, AWS Documentation
	9. Repository Link: https://github.com/Komal-7/topictribe

