AWS Cloud-Based Discussion Forum

by
Project Team: Cloud Crafters

Raahul Krishna -821934171

Komal Kiri - 825935760
Sumit Singh - 884416991
Vidhi Sharma - 820240299

Prem Brahmbhatt - 826308843

Discussion Forum Title: TopicTribe

A project report submitted for the fulfilment of

CPSC 465: Modern Software Deployment and Operations

Department of Computer Science
California State University, Fullerton

Submitted on 2" December 2024

Contents

O 14 g T 18 o] A o o B PP PP PPPPUPPRP PP 5
O = 7= Tod o 1 €0 101 o EE OO PPTTPPRON 5
2 @ o[- o3 €Y7= USSR 5
G TS Yo 01 o 1= PP 6

2. REIATEA WOTK ...ttt et e et e e et e e e e et e e e e e b e e e e nnnees 6

3. System Design and ArChitECIUIEciiiiii i e e 8
3.1 SYSEEM OVEIVIEW ...uiiiiiiiiiiie e ettt e e st e e e e e e e et e e e e e e e e s s aabbbeeeeaaeeesssnsatsraneeaeens 8
I N o] 411 (=Tod LU L = TP PP PPPRPPPRPRRP 8
G0 TR 1 2 1 101 U 9

o] o1 =T 0 g T=T] = LA o o SRR 10
I =T od T g o] oo 1= U L= = o 10
4.2 KEY FRALUIESceeiiee e ittt e e e e e e e e s s e e e e e e e s s s e e e e e e e e e e s annnrnes 10
4.3 Code Snippets and ConfigUIratioNScc.eeveiiiiiiieiiiieee e 11

4.3.1AWS CONFIQUIALIONS ..uvviiiiiiii i e e e e e e e e e e anreaes 11
O T 0o Yo 1= I a1 o o 1= PR 18

6. RESUILS QNG DiSCUSSIONS ..eiiiiiiiiiieiiieiee ettt e et e e et e e e e st e e e e annneeeeaan 24
6.1 PerfOrmanCe MELIICSc.uiiiiiieiiiieeiee et 24
6.2 Challenges ENCOUNtEred........ccccccviiiiiiiiic e, 24
8.3 B NETITS oottt s 25
7. CoNClUSIiONS and FULUIE WOTK.....oiiuiiiiiiiiiie ettt 26
7.0 CONCIUSTONS ...ttt ettt e e e e s e e e e e as 26
T2 FUTUIE WOTK ..ottt e e s e e s s 26

8. REIBIBINCESottt e e e e e 27

9. REPOSITOIY LMK eiiiiiiiiiiii et e s e e e e e e e s s st e e e e e e e s s snnntbaneeeeaeeeaanns 27

Table Of Figures

Figure 1:

Process FIOW DIagram.........ccueeiiiiiiiiieee ittt e e 8

Figure 2:GItHUD REPOSITONY ..ot 11

Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

AWS AMIPETY o 12
User Authentication Via Amazon COgNitococcueeeveeiiiiiieeeniiiieee e 12
API Gateway for Redirecting User Requests to Lambda Functions........... 13
APT ROULES ... e aeaeeeeeeees 13
B[[0 L= TP PP TPPPPPRPPPPPR 14
AWS Lambda FUNCLONSoooiiiiiiiicieee e 15

Figure 9: Lambda FUNCLONS COUE.......ccuiiiiiiiiiiiiieeeeeee e 15
Figure 10: DynamoDB Databasecocuueiiiiiiiiiiiee et 16
Figure 11: AMazon SQS ...t a e e e e 17
Figure 12: Amazon CloudWatch for 10gS........cooooiiiiiiiiiee e 17
Figure 13: Front End Code (FOrum Page)ccuuviiieiiiiiiieeeeiiieee e 18
Figure 14: Front End Code (Forum POSt Page)coooeviiiiiiiiiiiiieieeeeeeevevevveiinans 18
Figure 15: Front End Code 3 (Package.json file)ccccceeeviiiiiiiiiiiiiiceeee e 19
Figure 16: Front Code (LapP-SX)uueeeeiiiiieieeiriiiiee ettt e e 19
Figure 17: Backend Code (POSt Create ServiCe)iieeiiiiiiiiiiiiiieiee e 20
Figure 18: Backend Code (Post Retrieve ServiCe)cccccccoiviiiiiiiiieeieeeeeeeeeeeeeinnnen 20
Figure 19: Post Create Service fUNCLiON OVEIVIEWcccoviiiiieeeniiiiiiee e 21
FIQUIE 21 LOQIN PAgE ..uuuiiiiiiiiiiiiiiiie sttt e e e e e e e et e e e e e e aaaaesaassaenansnennne 21
FIgUre 22: SIgN UP Page......ccooo ittt e e e e e e e e 22
Figure 23: List of FOrum (HOME Page)ooviiiiiiiiiie et 22
Figure 24: DIiSCUSSION Of FOrUMcooiiiiiiiiii et 23
Figure 25: Topics on Discussion with vote and comments...........ccccccevveeeeeeveccnnnnee, 23

Abstract

This project implements a cloud-based discussion forum making use of the different
resources provided by Amazon Web Services (AWS). The said platform allows for an
interaction between users in which the users can talk to each other, exchange ideas
and form communities. The front end of the forum has been built using Next.js,
Amazon Cognito as a means of authenticated user interaction securely, and AWS
Lambda incorporated through APl Gateway as the backend for the system, thus
providing a robust and scalable architecture for the forum. Its broad capabilities
manage to include, but are not limited to, real-time post updates, email updates, and
elastic scalability dealing with a constant flow of traffic or even moderate flow of it. The
platform provides a dependable and consistent user experience by maximizing the
available capabilities of the AWS elements while guaranteeing protection of the
sensitive matters and making the system user friendly. The system is autoscaling in
nature meaning it grows seamlessly to meet demand without performance or security
risk. This project highlights the advantages of modern web development techniques
and integrating them with cloud-based architecture to improve the building of highly

functional online community platforms.

Keywords

AWS, Discussion Forum, Cognito, AWS Lambda, Next.js, DynamoDB, Scalability,

Serverless

1. Introduction

1.1 Background

e Growing Need for Online Communities: As more individuals and
organizations seek digital spaces for collaboration, learning, and engagement,
cloud-based discussion forums are essential for fostering inclusive, scalable,

and real-time online communities.

o Balancing Scalability and Cost: Ensuring the platform can scale dynamically
to handle traffic spikes while maintaining cost efficiency is a significant

challenge when building a cloud-based discussion forum.

1.2 Objective

The objective of this project is to create a secure, scalable, and feature-rich cloud-
based discussion forum that provides a seamless and engaging user experience. The

key goals are:

1. Ensure Secure User Authentication: Provide a secure and reliable
authentication process, protecting user data and interactions from unauthorized

access.

2. Deliver a Seamless User Experience: Create a fast, responsive, and intuitive
interface that facilitates smooth user interactions, fostering engagement and

community-building.

3. Enable Scalability: Design the platform to handle growing user traffic and data
efficiently, ensuring the system can scale dynamically without compromising

performance.

4. Support Real-Time Interaction: Implement features that enable users to
participate in real-time discussions, receive instant updates, and stay engaged

through timely notifications.

5. Ensure Modular and Maintainable Architecture: Adopt a flexible architecture
that allows for independent management of different forum components (such

as forums, posts, and votes), making future updates and enhancements easier.

6. Ensure Reliable Messaging: Guarantee the reliable delivery of important
messages, such as notifications to users via e-mail, ensuring consistent

communication within the platform.

1.3 Scope

This project focuses on developing a secure, scalable cloud-based discussion forum
that allows users to create and participate in discussions, vote on posts, and receive
real-time notifications. Key features include secure user authentication, real-time
updates, email notifications, and a serverless architecture for easy scalability. The

platform will support a growing user base, providing a seamless user experience.

However, the project will not include advanced content moderation tools, third-party
integrations, or mobile-specific features in its initial version. The scope is also limited

to English-language support, with future phases planned for expanding functionalities.

2. Related Work

e EXxisting cloud-based discussion forums, such as those built on Firebase or
Azure, can face challenges scaling efficiently during periods of high traffic. AWS
offers a more robust solution with services like AWS Lambda for serverless

computing and Amazon DynamoDB for scalable data storage, ensuring the

platform can automatically adjust resources to meet growing demand without

compromising performance.

While platforms like Firebase or local servers require manual configuration for
security and real-time features, AWS provides built-in solutions like Amazon
Cognito for secure user authentication and API Gateway for routing requests.
This enables seamless, secure interactions and real-time updates, enhancing

user engagement while maintaining a reliable and secure platform.

3. System Design and Architecture

3.1 System Overview

The AWS Cloud-Based Discussion Forum is a secure, scalable platform built to
facilitate real-time user interactions and community engagement. On the front end, the
platform uses Next.js to provide a responsive and dynamic user interface for creating
forums, posting content, and interacting with discussions. Amazon Cognito handles
secure user authentication, ensuring only registered users can access certain
features. On the backend, AWS Lambda processes API requests routed through API
Gateway, while Amazon DynamoDB stores user data, posts, and votes. Real-time
interactions and notifications are managed through Amazon SES, keeping users
informed about new posts or replies. The serverless architecture ensures the platform

can scale seamlessly, providing high availability and reliability as user traffic grows.

3.2 Architecture

| £ NOTIFICATIONS
BACKEND |
SERVICES

(res (=)
| 09) H
- 5 &
0 \ Amazon SQS Amazon SES

Forums

| A MONITORING

&5 | API LAYER
12 el % .

=) AUTHENTICATION

Amazon
A Cognito
) Amazon
Nextjs Aaws T (9 AWS API : CloudWatch
Amplify Gateway ,__) W

&

Amazon
DynamoDB

Figure 1: Process Flow Diagram

3.3 Workflow

The architecture is built on AWS cloud services, using a microservices approach:

1. Front-end: Next.js for frontend framework. AWS Amplify is used to host the front-

end.

2. User Authentication: Amazon Cognito will manage user sign-in and sign-up

processes.

3. APl Layer. AWS API Gateway routes incoming requests to respective

microservices.

4. Backend Services: AWS Lambda for serverless backend logic (Python-based)

for handling forums, posts, and votes.

5. Data Storage: Amazon DynamoDB as the NoSQL database to store forum-related

data.

6. Monitoring and Logging: Amazon CloudWatch for monitoring application health

and storing logs.

7. Notifications: Amazon SES sends email notifications to users when a forum or
post is created. Amazon SQS stores email requests, ensuring reliable message

delivery.

This architecture ensures scalability, high availability, and modularity, allowing for

future enhancements and optimizations.

4. Implementation

4.1 Technologies Used

e Front-End: Next.js

e Front-End Deployment: AWS Amplify

e Authentication: Amazon Cognito

e Back-End Services: AWS Lambda (Python)

e Database: Amazon DynamoDB (NoSQL)

e API Layer: AWS API| Gateway

¢ Notifications: Amazon SES (Email), Amazon SQS (Queuing)

e Logging: AWS CloudWatch

4.2 Key Features

e Secure User Authentication and Authorization: Users can securely sign up, log
in, and manage their accounts with Amazon Cognito, ensuring protected access

to forum features.

e Real-Time Post and Interaction: Users can create and interact with posts and

comments in real-time, with changes instantly reflected on the platform.

10

e Scalable, Serverless Backend: The platform uses AWS Lambda for serverless
processing and Amazon DynamoDB for scalable, high-performance data storage,

ensuring smooth operation even with increasing traffic.

e Real-Time Notifications: Users receive timely email notifications through

Amazon SES when new content is posted or when their posts receive responses.

e Modular Microservices Architecture: The platform follows a microservices-
based architecture, allowing independent management of forums, posts, votes,

and user data for easier maintenance and future scalability.

4.3 Code Snippets and Configurations

4.3.1 AWS Configurations

1. Frontend Deployment using AWS Amplify- The frontend code has been
created in Next.js framework and has been deployed on AWS Amplify. The

frontend code resides in a GitHub repository, from where Amplify fetches it for

deployment.
= O Komal-7 / topictribe Q Type [7]to search ++« O N
<> Code (@ Issues [Pullrequests 1 & Actions [Projects © Security [~ Insights
topictribe Public @Watch 1 ~ Yok 0 v fY Star 0
P master ~ ¥ 4 Branches 0 Tags Q Goto file t Add file - <> Code ~ About
Discussion forum on Cloud
Komal-7 Merge pull request #4 from Komal-7/phase2 = c2eec5d - 27 minutes ago 5) 30 Commits
[0 Readme
src phase 2 : comments page 28 minutes ago A- Activity
[eslintrcjson nitial commit from Create Next Apy * Ostars
® 1watching
O gitignore nitial commit from Create Next App ago W0 forks
[README.md Update README.md last month Report repository
[next.config.mjs Updated initial route last month
Releases
[package-lockjson added topics + votes 11 hours ago No releases publishe
0 package json added topics + votes 11 hours ago
Packanes

Figure 2:GitHub Repository

11

&

Ship with contidence

Easily spin up new environments by connecting branches from Git. Pull request previews allow team members to test changes and
merge to production with confidence. At deployment, managed CI/CD pipelines with full-stack branching require zero configuration.

£2 Production (main)
https://main.amplifyapp.com

Frontend Backend

¥ app/main [N o8B
A

& app/dev £3 Staging (dev)
https://dev.amplifyapp.com

Frontend Backend

N ON=R¥;

& € 90

Figure 3: AWS Amplify

User Authentication Via Amazon Cognito - A user pool in Amazon Cognito has
been created which will be storing the user information such as name, email and

account passwords.

@ fa @] N. California ¥ AdministratorAccess/sumit ¥

zon Cognito > User pools @ 6

e A

Amazon Cognito < (@ New from Amazon Verified Permissions! Cognito user group authorization for AP Gateway (Go to Amazon Verified Permissions [) X
You can now create group-aware authorization policies for your APIs with Amazon Verified Permissions, a

User pools fine-grained authorization service for applications. Learn more [3

Identity pools
User pools (1) infs @ Delete Craate user pool
View and configure your user pools. User pools are directories of federated and local user profiles. They provide authentication options for your users,
| Q. Search user poots by name or ID 1 [}

User pool name ry User pool ID v Created time v | Last updated time v
QO topictribe-user-pool-west us-west-1_y8zDAy7sB 2 months ago 3 days ago

Figure 4: User Authentication Via Amazon Cognito

API Gateway for Redirecting User Requests to Lambda Functions: After the

user has been authenticated, Amazon API Gateway will be directing these user

12

requests to the appropriate Lambda functions, where the backend logic for various

operations in the discussion forum is defined.

B 4 (0] 3] N. California v AdministratorAccess/sumit ¥

API Gateway <

APIs (1/1) ©) (petere) (ERSERR
APIs
Custom domain names Updated [Q Findapis | 1 @
Domain name access associations New | | | APl endpoint 1
: Name A | Description v| v | Protocol v ndp v ‘ Created v
VPC links type

/discussion_forum pid5ah2e94 HTTP Regional 2024-11-28

Usage plans
AP| keys
Client certificates

Settings

Figure 5: API Gateway for Redirecting User Requests to Lambda Functions

2] Q ® S N. California v AdministratorAccess/sumit v

> Routes - /discussion_forum (pi45ah2e94) c]
a
API Gateway <
Routes Stage: - ¥ Deploy
APIs
Choose a route.
Custom domain names Routes for /discussion_forum
Domain name access associations
Create
VPC links

(Q search

API: /discussion_for...(pi45ah2e94)
¥ /create_forum

POST
¥ Develop ¥ /create_post
Routes POST
Authorization v /get_forums
Integrations GET
CORS
¥ /get_posts
Reimport
GET
Export
v /vote
¥ Deploy POST
Stages
¥ Monitor
Metrics
Logging

Figure 6: API Routes

13

= Lambda » Functions > Post_Create_Service

Code Test Monitor Configuration Aliases Versions

General configuration Triggel‘S (1) Info @ Fix errors Edit) Delete ‘ Add trigger)
<1

Triggers [Q, Find triggers]
Permissions 0 | Trigger
Destinations

APl Gateway: /discussion_forum
arn:aws:execute-apius-west-1:314146321435:pi45ah2e94/*/*fcreate_post

Function URL O AP endpeint: https://pi45ah2e94.execute-api.us-west-1.amazonaws.com/discussion_forum/create_post
Environment variables » Details

Tags

VPC

RDS databases

Maonitoring and
operations tools

Figure 7: Triggers

14

4. Backend Logic Implemented Via AWS Lambda: The backend logic for
various operations like post, vote and comment in the discussion forum have
been stored in AWS Lambda functions written Python.

B & @ @ Ncilfomiav

e Lambda > Functions ® @

Lambda < Functions (7) Last fetched 20 seconds age @ Actions ¥ Create function

h by keyword | 1)

by tag

Dashboard

Applications

Fi tii D ipti N N
Functions O et e | oescriPtl @ | Packagetype ¥ | Runtime ¢ | Lastmodified v
¥ Additional resources g end.fmal Zi Python 3.12 2 days ago
Code signing configurations _Service P s ~fRE e
Event source mappings
Layers (] zZip Python 3.12 1 hour ago
Replicas
O Zip Python 3.12 2 days aqo
¥ Related AWS resources
Step Functions state machines Email Vertf
O hetrem - Zip Python 3.12
er_Ses
O Fomcres . bython .12 i
te_Service P yien 3. 2580
Forum_Retri
O DO' '_” - F__:' Zip Python 3.12 2days age
Vote_Servi
(m] c) oenic = Zip Python 3.12 2days ago
Figure 8: AWS Lambda Functions
= Lambda > Functions > Post_Retrieve_Service ® (]
« Post_Retrieve_Service DS0Oo=E
= EXPLORER % lambda_fun o
POST_RETRIEVE_SERVICE

% lambda_function.py

o B

dynamodb.conditions import Key, Attr

dynamodb = boto3.resource('dynamodb’)

X7

POSTS_TABLE = *

DEPLOY .
VOTES_TABLE =

Deploy (Ctri+Shift+U)
Test (Ctrl+Shift+1)

5B

None
= event.
= dynamodb. Table(POSTS_TABLE)
ost_id
Retrieve a spe
19 response = table.
Key:
TEST EVENTS o P
2 post_id t
You have ated any test events 2
24)
{?‘} {'message’: 'Post not found')
ENVIRONMENT VARIABLES
RAAAN D Amasann A% FAlRS Searacd IITFR IF Duthan 5] 1amhda

Figure 9: Lambda Functions Code

15

5.

Forum Data Stored in DynamoDB: Forum data generated by various user

operations such as new posts, new comments, vote count, etc. are stored in

DynamoDB.

DynamoDB

Dashboard
Tables

Explore items
PartiQL editor
Backups

Exports to 53
Imports from 53
Integrations New
Reserved capacity

Settings

¥ DAX
Clusters
Subnet groups
Parameter groups

Events

Amazon SQS and SES for Managing Notifications:

e DynamoDB > Tables

Tables (4)

\'_ Q. Find tobles] \ Any tag key
[J| Name a @ Status ¥ Partition key ¥ Sortkey ¥
O Foums @ Active forum_id (S)
(] ForumUsers @ Active forum_id (S) user_id (S)
(m} Posts @ Active forum_id (S) post_id (S)
O votes @ Active post_id (5) user_id (S)

Indexes ¥

0

0

0

© ©®
@ Actions ¥ Delete Create table
4 matches 1 @
Replication Regions ¥ Deletion protection ¥ Favorite ¥
o Qof &
0 Qoff o
0 Qof o
0 ot o

Figure 10: DynamoDB Database

The new notifications

generated by the user operations in the forum will be conveyed to the users using

amazon SQS and SES. Since the architecture is serverless and all operations are

carried out in the form of lambda function calls, with each new change the user

16

needs to be notified about, a request will be coming in amazon SQS, which will

then be forwarded to the user using SES.

Q (0)] N. California v AdministratorAccess/vidhi ¥
= AmazonSQS > Queues @ @
Queues (1) @ Edit Delete Send and receive messages Actions ¥ Create queue
[Q Search queues by prefix J 1 o)

Name A Type v Created v ilable ¥ in flight v Encryption v Content-based
@) send_email_queue Standard 2024-11-05T16:52-08:00 0 0 Amazon SQS key (SSE-SQS)

Figure 11: Amazon SQS

7. AWS CloudWatch for Logging: The logs generated by various user operations

in the discussion forum will be logged and recorded by AWS CloudWatch.

fal @] N. California v AdministratorAccess/vidhi
e CloudWatch > Log groups (¢
CloudWatch <
Log groups ('l 4) @ View in Logs Insights Start tailing Create log group
Favorites and recents » By default, we only load up to 10000 log groups.
Dashboards New [Q_ Filter log groups or try prefix search] [) Exact match 1 @
¥ Alarms Mo @o @o O Log group v | Logeclass v | Anomalyd.. ¥ | Da.. ¥ | Se.. ¥ | Rete
In alarm " q
O faws/amplify/d1uu28f7129xa0 Standard Configure - - Neve
All alarms
) /aws/amplify/d2mnouebsqcnzp standard Configure - - Neve
¥ L
0% O Jaws/amplify/dcayj336mc0j6 Standard Configure - - Neve
Log groups
. aws/amplify/dt9bwvx0zsq7u Standard Configure - - Neve
Log Anomalies a /£ /amplify/ ! —ormgure
Live Tail O Jfaws/lambda/Email_Verifier_Ses Standard Configure - - Neve
Logs Insights [0 /aws/lambda/Forum_Create_Service Standard Configure - - Neve
Contributor Insights
O /aws/lambda/Forum_Retrieve_Service Standard Configure - - Neve

b Matrire

Figure 12: Amazon CloudWatch for logs

17

4.3.2 Code Snippets

1. Front End Code (Next.js)

I
1
I
1

axios from

CardHeader, Divider, Link, Skeleton }

ForumPa|
eRouter

setIsloading]

urrentForu

orumId
setIsloading(

Figure 13: Front End Code (Forum Page)

{ useRout

RichEdite
Link m
{ useUser

convertFromRaw, RawDraftContentState }
stateToHTML } f t himl " ;
, CardHeader, D der, skeleton }

ding, setIsloading] =
etCurrentPost]

rrentP

Figure 14: Front End Code (Forum Post Page)

18

{} packagejson *

_app.isx

X

@nextui-org

@nextui-org/

react

"react-dom"

"react-dratt-wysiwyg":

Figure 15: Front End Code 3 (Package.json file)

I || s
LIENT ID || °

“omponent, pageProps

loginMechanisms={ [1']} signupAttribute
signOut, user }) (
user={user]

signOut) signOut(); router.pus

Figure 16: Front Code (_app.tsx)

19

2. Backend Code - AWS Lambda Functions

O Post_Create_Service DEDoDB=a

= EXPLORER < @ [ambda functionpy X o

s POST_CREATE SERVICE @ lambda_function.py
@ lambda_function.py 1 import json
import boto3
import uuid

from datetime import datetime
from boto3.dynamodb.conditions import Key

([ESC] to

v O

dynamodb = boto3.resource('dynamodb’)

~ DEPLOY sqs = boto3.client('sqs’)

Deploy (Ctrl+Shift+U) 1e POSTS_TABLE = 'Posts’
11 FORUM_USERS_TABLE = 'ForumUsers'

12 SQS_QUEUE_URL = 'https://sqgs.us-west-1.amazonaws.com/314146321435/send_email_gueue"

R

2

Ctrl+Shift+1)
13 USER_POOL_ID = ‘us-west-1_y8zDAy7sB’
14
15
 TEST EVENTS 16 def lambda_handler(event, context):
17 body = event.get('body', '')
You haven't created any test 18 if event.get('isBase64Encoded”, False):
events, 13 body = base64.b&4decode(body).decode('utf-8")
20 parsed_body = json.loads(body)
Ctrl+Shift+C) 2 forum_id = parsed_body.get('forum_id')
22 user_id = parsed_body.get('user_id')
23 user_name = parsed_body.get('user_name')
@ 24 content = parsed_body.get('content')
» ENVIRONMENT VARIABLES 25 parent post id = parsed body.get('parent post id', None) # If it's a reply to another post, parent pos
®O0MA0 D AmazonQ Ln1.Col1 Soaces:4 UTF-8 LF Pvthon Bllambda LavoutUS O
Figure 17: Backend Code (Post Create Service)
OF i i (e R -
= EXPLORER == @ lambda_functionpy X m
v POST_RETRIEVE_SERVICE @ lambda_function.py

@ lambda_function.py 1 import json Amazon Q Tip 1/3: Start typing to get suggestions ([ESC] to e)

v ©

2 import boto3
3 from boto3.dynamodb.conditions import Key, Attr
4 o
[5 dynamodb = boto3.resource(‘dynamodb’) =
& 6
7 POSTS_TABLE = 'Posts’
Bg' DEPLOY 8 VOTES_TABLE = 'Votes' =
9
1e def lambda_handler(event, context):
A 1 forum_id = event.get('queryStringParameters’, {}).get('forum_id')
2 user_id = event.get('queryStringParameters’', {}).get('user_id')
13 parent_post_id = event.get('queryStringParameters', {}).get('parent_post_id', None)
14 post_id = event.get('queryStringParameters', {}).get('post_id', None)
15 table = dynamodb.Table(POSTS_TABLE)
+ TESTEVENTS 15
17 if post_id:
You haven't created any test 18 # Retrieve a specific post
events. 19 response = table.get_item(
20 Key={
= vy ——
22 'post_id': post_id
23 }
§3% 24)
2 ENVIRONMENT VARIABLES 25 if 'Item’ not in response:
®0A0 D AmazonQ In1.Col1 Spaces:4 UTF-8 LF Pvthon [llambda LlavoutUS 0O

Figure 18: Backend Code (Post Retrieve Service)

20

= Lambda » Functions }» Post_Create_Service

Post_Create_Service

v Function overview info

ELTET) Template

‘ Post_Create_Service ‘

‘ @ Layers (0) |

‘ m API Gateway ‘ (+ Add destination)

Figure 19: Post Create Service function overview

5. Frontend Design

Sign In Create Account

Email

Password

| =]

Forgot your password?

Figure 20: Login Page

21

Sign In

Email

Create Account

| Enter your Email

Password

| Enter your Password

Confirm Password

| Please confirm your Password

Preferred Username

| Enter your Preferred Username

Create Account

TopicTribe

@ sumit
& 2024-12-03710521:58. 613973

Cloud Services Discussion

Cloud Services Discussion

Explore the Forum &

@ Kir
B 2024-12-027123:11:05.221267

Projects for Subjects
List of ideas for each category

Explore the Forum &

Figure 21: Sign Up Page

@ Prem
' 5024-12-03702:14:19.550025

MSD Project Phase 3

All about our Discussion Forum

Explore the Forum &

@ Kir
' 202412-02723:11:05.212995

Projects for Subjects
List of ideas for each category

Explore the Forum

sumit Sign Out

Create Forum

@ vidhi
-

2024-12-03

31.926525
All About Devops
This a forum for discussing about current and

upcoming DevOps technologies.

Explore the Forum 4

@ rahulkrish2g

2024-12-02

12:51:39,952025

CPSC 465 forum
Class Homework Help

Explore the Forum ¢

Figure 22: List of Forum (Home Page)

22

TopicTribe sumit | Signout

Cloud Services Discussion

Cloud Services Discussion

B I U & {} x* X MNomal ~ 167 Font v = - bHde=aesc

Start Discussion

‘ sumit
2024-12-0370!

Why is AWS so complicated?

A0 v 0 Explore the Discussion (5

Difference between AWS and Azure?

~ 0 v 0 Explore the Discussion 4

]

2-03T05:24:54.362042

Figure 23: Discussion of Forum

TOpiCTr‘ibe sumit | Sign Out
Back to Discussions

@ sumit
W 5024-12-03T05:24:54 362042

AWS or Azure?
With AWS' marketshare decreasing (now 32%) and Azure's marketshare increasing (now 23%)

| was wondering which of the two is a better option to choose towards a Cloud Consulting business
Which one of the two (AWS/Azure) do you think will have more potential clients for a Cloud Consulting firm?

B I/ U & {} >@ X MNomal ¥ 167 Font -

i
i

il

[l

A Y
%
E
(@]
i)
»
€3

Comment

‘ sumit
2024-12-03T05:25:50.981700

Azure is being adopted by legacy Windows shops, because the licensing is advantageous and the ecosystem familiar. If you want to be a consulting company in Azure bring those
strengths.
AWS sends the salespeople and wines and dines us. Microsoft sends a couple of nerds and talks tech.

Figure 24: Topics on Discussion with vote and comments

23

6. Results and Discussions

6.1 Performance Metrics

e Latency, Response Times, and Throughput: The AWS Cloud-Based

Discussion Forum ensures low latency and fast response times by using AWS
Lambda for serverless processing and Amazon DynamoDB for scalable data
storage. This serverless architecture automatically scales based on demand,
minimizing delays during traffic spikes. APl Gateway efficiently handles

requests, ensuring smooth interactions, real-time updates, and notifications.

Cost Comparison with and without Serverless Architecture: With AWS
Lambda's serverless architecture, the platform incurs costs based on actual
usage, reducing expenses during low-traffic periods. In contrast, traditional
server-based solutions require fixed costs for maintaining infrastructure, even
during periods of low activity. Serverless architecture eliminates this overhead,

offering a more cost-effective and scalable solution.

6.2 Challenges Encountered

1.

Difficulty in Technology Selection: We initially faced challenges selecting
technologies, starting with EC2 and later transitioning to serverless Lambda,
while also moving from RDS to DynamoDB for a better fit with our project

requirements.

User Pool Configuration Issue: The initial Amazon Cognito user pool was
configured to accept just the user emails and passwords, but later we needed
to include users' names. However, for this change, the existing configuration

could not be modified.

24

3. Converting Relational Schema to DynamoDB Schema: As we plan to add
more features to our project, modifying a relational database would have been
challenging. Therefore, we transitioned to DynamoDB, which offers a schema
less structure and greater scalability.

4. User Verification Email Issue: We initially planned to send only one
verification email to users using Amazon Cognito and Amazon SES. To achieve
this, we attempted to use an AWS Lambda function with a Post Confirmation
trigger to send a custom email. However, we encountered an issue where
SES's default confirmation email could not be bypassed, and the user would

always receive both the SES-generated email and our custom email.

5. Mindful Use of AWS Free Tier: Resource management was critical to avoid

exceeding the AWS free tier limits.

6.3 Benefits

e Scalability: The serverless architecture using AWS Lambda and DynamoDB
ensures automatic scaling to handle growing user traffic without manual

intervention, maintaining performance during high demand.

e Security: Amazon Cognito provides robust user authentication and
authorization, ensuring secure access to the platform while protecting user

data.
e User Experience: Real-time interactions, instant notifications via Amazon

SES, and a responsive Next.js front end create an engaging, seamless

experience for users across devices.

25

7. Conclusions and Future Work

7.1 Conclusions

The AWS Cloud-Based Discussion Forum is a scalable, secure platform designed for
real-time user engagement. Built on a serverless architecture, it uses AWS Lambda
for backend processing, Amazon Cognito for user authentication, and Amazon
DynamoDB for fast, reliable data storage. The forum supports dynamic interactions,
allowing users to create posts, comment, and vote, with real-time notifications via

Amazon SES to keep users engaged.

The system’s microservices architecture ensures flexibility and easy maintenance,
allowing each component (forums, posts, votes) to scale independently. Despite
challenges like migrating to a serverless setup and handling schema changes, the
team successfully navigated these issues. The result is a robust, responsive forum

offering a seamless, scalable experience for users.

7.2 Future Work

e Implement Al-based content moderation using tools like Amazon Comprehend

for sentiment analysis and automated flagging of inappropriate content.

e Add multi-language support to allow users from different regions to engage in

discussions in their native languages.

e Develop a mobile app for iOS and Android to provide a more seamless user

experience with features like push notifications and offline access.

26

8. References

e AWS Documentation, AWS Documentation

e AWS Cognito Documentation, AWS Coagnito

e AWS Lambda Documentation, AWS Lambda

e AWS DynamoDB Documentation, DynamoDB

9. Repository Link: https:/github.com/Komal-7/topictribe

27

https://aws.amazon.com/documentation/
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://github.com/Komal-7/topictribe

	1. Introduction
	1.1 Background
	1.2 Objective
	1.3 Scope

	2. Related Work
	3. System Design and Architecture
	3.1 System Overview
	The AWS Cloud-Based Discussion Forum is a secure, scalable platform built to facilitate real-time user interactions and community engagement. On the front end, the platform uses Next.js to provide a responsive and dynamic user interface for creating f...
	3.3 Workflow

	4. Implementation
	4.1 Technologies Used ● Front-End: Next.js
	4.2 Key Features
	4.3 Code Snippets and Configurations
	4.3.1 AWS Configurations
	4.3.2 Code Snippets

	6. Results and Discussions
	6.1 Performance Metrics
	6.2 Challenges Encountered
	6.3 Benefits
	7. Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	8. References ● AWS Documentation, AWS Documentation
	9. Repository Link: https://github.com/Komal-7/topictribe

