
📌Project Name - FolioHub
Developed by - Komal Kiri

💻Code and Deployment

●​ GitHub Repository URL
○​ https://github.com/Komal-7/folioHub-server (Backend)
○​ https://github.com/Komal-7/folioHub (Frontend)​

●​ Live Website URL

○​ https://foliocore.netlify.app/ (INACTIVE currently)

📚Project Overview

●​ This web application enables users to create, customize, and deploy personal
portfolio websites through a user-friendly visual editor.

●​ Portfolios are stored in S3 for persistence but served through dynamic routes
on the main application’s domain (https://foliocore.netlify.app), allowing users
to have custom portfolio links like:

https://foliocore.netlify.app/portfolio/:username

🔧Backend Structure

Backend Implementation

●​ Framework: Node.js + Express for backend, DynamoDB for database, and AWS
S3 for storage.

●​ Backend Folder Structure: The backend is modular and divided into:
○​ routes/: Handles routing logic
○​ controllers/: Handles HTTP requests.
○​ services/: Contains reusable business logic.

https://github.com/Komal-7/folioHub-server
https://github.com/Komal-7/folioHub
https://foliocore.netlify.app/

○​ repositories/: Handles DynamoDB connection and operations.
○​ s3/: Manages interactions with AWS S3, including signed URLs.
○​ middlewares/ : Handles middleware duties like authenticating users before

routing.​

●​ AWS SDK Integration:​

○​ DynamoDB: Connected using AWS.DynamoDB.DocumentClient for
simplified data operations.

○​ S3: Interfaced using AWS.S3 for file storage and retrieval.​

●​ Authentication:​

○​ Utilizes JWT for session management.
○​ Tokens are stored in HTTP-only cookies to enhance security​

●​ Signed URLs:​

○​ Generated for accessing private S3 buckets to ensure secure, time-limited

access to resources.​

●​ Deployment: ​

○​ Instead of exposing S3 URLs, deployment metadata is saved in
DynamoDB, and the backend dynamically serves HTML files from the
foliohub-user-deployments bucket when a visitor accesses a user
portfolio URL.​

Database Used

●​ Amazon DynamoDB serves as the primary database, managing:​

○​ Users: Stores user credentials and profile information.​

○​ Templates: Contains metadata for global templates, including S3 keys for
template JSON and preview images.​

○​ User_Projects: Holds user-specific project data, including references to
S3-stored project JSON files and deployment metadata.

●​ AWS S3 Buckets - The application utilizes multiple S3 buckets for organized
storage:​

○​ foliohub-templates​

■​ Stores global template JSON files and preview images.
■​ Accessed via signed URLs for security.
■​ DynamoDB stores references (S3 keys) to these files.​

○​ foliohub-user-projects​

■​ Stores individual user project JSON files.
■​ Accessed via signed URLs for security.​

○​ foliohub-user-assets​

■​ Hosts user-uploaded assets (e.g., images).
■​ Files are publicly accessible to enable embedding in portfolios.​

○​ foliohub-user-deployments​

■​ Contains deployed HTML files for user portfolios.
■​ Accessed by the backend to serve content through the main

application domain.​

API Endpoints

The backend exposes the following RESTful API endpoints:

●​ Authentication Routes​

○​ POST /register: Register a new user.
○​ POST /login: Authenticate user and issue JWT.
○​ GET /user: Retrieve authenticated user's information.
○​ POST /logout: Invalidate user session.​

●​ Template Routes​

○​ GET /templates: Fetch list of global templates.
○​ GET /template/:id: Retrieve specific template metadata to load in editor.​

●​ Asset Management Routes​

○​ POST /assets: Upload user assets.
○​ GET /assets: List user's uploaded assets.
○​ DELETE /assets: Delete specified user assets.​

●​ Project Routes​

○​ GET /projects: Retrieve all projects for the authenticated user.
○​ POST /save-project: Save or update a user project.
○​ POST /deploy: Deploy a user project to generate a public portfolio URL.​

●​ Portfolio Route​

○​ GET /portfolio/:sitename: Serve the deployed portfolio corresponding to

the provided site name.​

🌟Core Features

●​ User Authentication: Secure registration and login system.​

●​ Template Browsing: Search and preview global templates.​

●​ Visual Editor: Drag-and-drop interface for customizing templates.​

●​ Asset Management: Upload and manage personal assets within the editor.​

●​ Project Management: Save, view, and manage multiple projects.​

●​ Deployment: Publish portfolios to a public URL under the main application
domain.​

●​ User Dashboard: Access account details and manage deployed projects.​

📝Feature Details

User Authentication

●​ Functionality: Allows users to create an account, log in, and maintain a secure
session.

●​ User Interactions:
○​ Users register with an email and password.
○​ Upon login, a JWT is issued and stored in an HTTP-only cookie.
○​ Authenticated users can access protected routes and features.

●​ Technical Details:
○​ Passwords are hashed using bcrypt before storage in DynamoDB.
○​ JWTs are managed using the jsonwebtoken library.
○​ Sessions are maintained via secure, HTTP-only cookies.​

Template Browsing

●​ Functionality: Enables users to explore and select from a collection of global
templates.

●​ User Interactions:
○​ Users can search templates by keywords.
○​ Preview images are displayed for each template.
○​ Selecting a template loads it into the editor for customization

●​ Technical Details:
○​ Template metadata is stored in the DynamoDB Templates table.
○​ Template JSON and preview images are stored in the foliohub-templates

S3 bucket.
○​ The frontend fetches template data via the /templates and /template/:id

endpoints.​

Visual Editor (GrapeJS Integration)

●​ Functionality: Provides a drag-and-drop interface for users to customize
selected templates.

●​ User Interactions:
○​ Users can add, remove, and modify components within the template.
○​ Styles and content can be adjusted in real-time.
○​ Assets can be uploaded directly into the editor.

●​ Technical Details:
○​ GrapeJS is integrated into the frontend to facilitate visual editing.
○​ Custom configurations are applied to support asset management and

template loading.
○​ Edited content is serialized into JSON for storage and deployment.​

Asset Management

●​ Functionality: Allows users to upload and manage personal assets for use
within their portfolios.

●​ User Interactions:
○​ Users can upload images and other assets through the editor interface.
○​ Uploaded assets are listed and can be inserted into the template.
○​ Assets can be deleted when no longer needed.

●​ Technical Details:
○​ Assets are uploaded to the public foliohub-user-assets S3 bucket.
○​ Metadata and references are managed within the user's session.
○​ The backend provides endpoints for uploading (POST /assets), listing

(GET /assets), and deleting (DELETE /assets) assets.​

Project Management

●​ Functionality: Enables users to save and manage multiple projects.
●​ User Interactions:

○​ Users can save their current work as a project.
○​ A list of saved projects is accessible from the dashboard.
○​ Projects can be reopened for further editing or deployment.
○​ Deployed Portfolio URL shown here.

●​ Technical Details:
○​ Project metadata is stored in the DynamoDB User_Projects table.
○​ Project content is saved as JSON files in the private foliohub-user-projects

S3 bucket.
○​ Access to project files is secured via signed URLs.​

Deployment

●​ Functionality: Allows users to publish their customized portfolios to a public
URL.

●​ User Interactions:
○​ Users can deploy any one project at a time.
○​ A unique URL is generated for the deployed portfolio.
○​ Deployed portfolios are accessible to the public.

●​ Technical Details:
○​ Deployed HTML files are stored in the foliohub-user-deployments S3

bucket.
○​ The backend serves these files through the /portfolio/:sitename route.
○​ Access to deployment files is managed via signed URLs to ensure

security.​

User Dashboard

●​ Functionality: Provides users with details of their account.
●​ User Interactions:

○​ Users can view their account details.
●​ Technical Details:

○​ Account information is retrieved from the DynamoDB Users table.
○​ The dashboard is a protected route, accessible only to authenticated

users.

	📌Project Name - FolioHub
	💻Code and Deployment
	●​GitHub Repository URL
	●​Live Website URL

	📚Project Overview
	
	🔧Backend Structure
	Backend Implementation
	Database Used
	API Endpoints

	🌟Core Features
	📝Feature Details

