s« Project Name - FolioHub
Developed by - Komal Kiri

= Code and Deployment

e GitHub Repository URL
o https://qithub.com/Komal-7/folioHub-server (Backend)
o https://qithub.com/Komal-7/folioHub (Frontend)

e Live Website URL
o https://foliocore.netlify.app/ (INACTIVE currently)

=Project Overview

e This web application enables users to create, customize, and deploy personal
portfolio websites through a user-friendly visual editor.

e Portfolios are stored in S3 for persistence but served through dynamic routes
on the main application’s domain (https://foliocore.netlify.app), allowing users
to have custom portfolio links like:

https://foliocore.netlify.app/portfolio/:username

“. Backend Structure

Backend Implementation

e Framework: Node.js + Express for backend, DynamoDB for database, and AWS
S3 for storage.

e Backend Folder Structure: The backend is modular and divided into:
o routes/: Handles routing logic
o controllers/: Handles HTTP requests.
o services/: Contains reusable business logic.

https://github.com/Komal-7/folioHub-server
https://github.com/Komal-7/folioHub
https://foliocore.netlify.app/

o repositories/: Handles DynamoDB connection and operations.

o s3/: Manages interactions with AWS S3, including signed URLSs.

o middlewares/ : Handles middleware duties like authenticating users before
routing.

e AWS SDK Integration:
o DynamoDB: Connected using AWS.DynamoDB.DocumentClient for
simplified data operations.
o 83: Interfaced using AWS.S3 for file storage and retrieval.

e Authentication:

o Utilizes JWT for session management.
o Tokens are stored in HTTP-only cookies to enhance security

e Signed URLs:

o Generated for accessing private S3 buckets to ensure secure, time-limited
access to resources.

e Deployment:

o Instead of exposing S3 URLSs, deployment metadata is saved in
DynamoDB, and the backend dynamically serves HTML files from the
foliohub-user-deployments bucket when a visitor accesses a user
portfolio URL.

Database Used

e Amazon DynamoDB serves as the primary database, managing:
o Users: Stores user credentials and profile information.

o Templates: Contains metadata for global templates, including S3 keys for
template JSON and preview images.

o User_Projects: Holds user-specific project data, including references to
S3-stored project JSON files and deployment metadata.

e AWS S3 Buckets - The application utilizes multiple S3 buckets for organized
storage:

o foliohub-templates
m Stores global template JSON files and preview images.
m Accessed via signed URLs for security.
m DynamoDB stores references (S3 keys) to these files.

o foliohub-user-projects

m Stores individual user project JSON files.
m Accessed via signed URLs for security.

o foliohub-user-assets

m Hosts user-uploaded assets (e.g., images).
m Files are publicly accessible to enable embedding in portfolios.

o foliohub-user-deployments

m Contains deployed HTML files for user portfolios.
m Accessed by the backend to serve content through the main
application domain.

API Endpoints

The backend exposes the following RESTful APl endpoints:

e Authentication Routes

POST /register: Register a new user.

POST /login: Authenticate user and issue JWT.

GET /user: Retrieve authenticated user's information.
POST /logout: Invalidate user session.

o O O O

e Template Routes

o GET /templates: Fetch list of global templates.
o GET /template/:id: Retrieve specific template metadata to load in editor.

e Asset Management Routes
o POST /assets: Upload user assets.
o GET /assets: List user's uploaded assets.

o DELETE /assets: Delete specified user assets.

e Project Routes

o GET /projects: Retrieve all projects for the authenticated user.
o POST /save-project: Save or update a user project.
o POST /deploy: Deploy a user project to generate a public portfolio URL.

¢ Portfolio Route

o GET /portfolio/:sitename: Serve the deployed portfolio corresponding to
the provided site name.

Core Features

e User Authentication: Secure registration and login system.

e Template Browsing: Search and preview global templates.

e Visual Editor: Drag-and-drop interface for customizing templates.

e Asset Management: Upload and manage personal assets within the editor.
e Project Management: Save, view, and manage multiple projects.

e Deployment: Publish portfolios to a public URL under the main application
domain.

e User Dashboard: Access account details and manage deployed projects.

/' Feature Details

User Authentication

e Functionality: Allows users to create an account, log in, and maintain a secure
session.

e User Interactions:
o Users register with an email and password.
o Upon login, a JWT is issued and stored in an HTTP-only cookie.
o Authenticated users can access protected routes and features.
e Technical Details:
o Passwords are hashed using bcrypt before storage in DynamoDB.
o JWTs are managed using the jsonwebtoken library.
o Sessions are maintained via secure, HTTP-only cookies.

Template Browsing

e Functionality: Enables users to explore and select from a collection of global
templates.
e User Interactions:
o Users can search templates by keywords.
o Preview images are displayed for each template.
o Selecting a template loads it into the editor for customization
e Technical Details:
o Template metadata is stored in the DynamoDB Templates table.
o Template JSON and preview images are stored in the foliohub-templates
S3 bucket.
o The frontend fetches template data via the /templates and /template/:id
endpoints.

Visual Editor (GrapedJS Integration)

e Functionality: Provides a drag-and-drop interface for users to customize
selected templates.
e User Interactions:
o Users can add, remove, and modify components within the template.
o Styles and content can be adjusted in real-time.
o Assets can be uploaded directly into the editor.
e Technical Details:
o GrapedS is integrated into the frontend to facilitate visual editing.
o Custom configurations are applied to support asset management and
template loading.
o Edited content is serialized into JSON for storage and deployment.

Asset Management

e Functionality: Allows users to upload and manage personal assets for use

within their portfolios.

e User Interactions:
o Users can upload images and other assets through the editor interface.

o Uploaded assets are listed and can be inserted into the template.
o Assets can be deleted when no longer needed.

e Technical Details:
o Assets are uploaded to the public foliohub-user-assets S3 bucket.

o Metadata and references are managed within the user's session.
o The backend provides endpoints for uploading (POST /assets), listing
(GET /assets), and deleting (DELETE /assets) assets.

Project Management

e Functionality: Enables users to save and manage multiple projects.
e User Interactions:

o Users can save their current work as a project.

o Alist of saved projects is accessible from the dashboard.

o Projects can be reopened for further editing or deployment.

o Deployed Portfolio URL shown here.

e Technical Details:
o Project metadata is stored in the DynamoDB User_Projects table.

o Project content is saved as JSON files in the private foliohub-user-projects

S3 bucket.
o Access to project files is secured via signed URLs.

Deployment

e Functionality: Allows users to publish their customized portfolios to a public

URL.
e User Interactions:
o Users can deploy any one project at a time.
o A unique URL is generated for the deployed portfolio.
o Deployed portfolios are accessible to the public.

e Technical Details:
o Deployed HTML files are stored in the foliohub-user-deployments S3

bucket.
The backend serves these files through the /portfolio/:sitename route.

Access to deployment files is managed via signed URLs to ensure
security.

User Dashboard

e Functionality: Provides users with details of their account.
e User Interactions:
o Users can view their account details.
e Technical Details:
o Account information is retrieved from the DynamoDB Users table.
o The dashboard is a protected route, accessible only to authenticated
users.

	📌Project Name - FolioHub
	💻Code and Deployment
	●​GitHub Repository URL
	●​Live Website URL

	📚Project Overview
	
	🔧Backend Structure
	Backend Implementation
	Database Used
	API Endpoints

	🌟Core Features
	📝Feature Details

